Journal of Organometallic Chemistry, 425 (1992) 155–164 Elsevier Sequoia S.A., Lausanne JOM 22265

Nucleophilic attack by 2-pyridylpalladium(II) and platinum(II) complexes on the organic chlorides $ClCH_2R$ (R = COMe, CN, Ph, Cl)

Bruno Crociani *, Francesca Di Bianca, Alberta Fontana

Dipartimento di Chimica Inorganica, University of Palermo, Palermo (Italy)

Roberta Bertani

Centro Chimica Tecnologia Composti Metallorganici Elementi Transizione, C.N.R., University of Padova, Padova (Italy) (Bessived Ivers 14, 1991)

(Received June 14, 1991)

Abstract

The 2-pyridyl complexes trans-[MCl(C₅H₄N-C²)(PPh₃)₂] (M = Pd, 1a; M = Pt, 1b), [MCl(C₅H₄N-C²)(dppe)] (M = Pd, 2a; M = Pt, 2b) and [M(dmtc)(C₅H₄N-C²)(PPh₃)] (M = Pd, 3a; M = Pt, 3b) react with the chlorides ClCH₂R (R = COMe, CN, Ph) to give cationic products containing the 2-pyridylium ligands (1-CH₂R)C₅H₄N-C². The rate of nucleophilic displacement of the chloride ion from ClCH₂R depends on the central metal (Pt > Pd), on the coordination geometry (1 < 2 ~ 3) and on the substituent R (COMe > CN > Ph for the reactions with 3b). Like 1b and 2b, complex 3b also reacts with dichloromethane to give [Pt(dmtc){(1-CH₂Cl)C₅H₄N-C²}(PPh₃)]⁺. The reaction of the binuclear compound [{PdCl(μ -C₅H₄N-C², N)(PPh₃)}] with chloroacetone in the presence of chloride ion yields the zwitterionic derivative *cis*-[PdCl₂{(1-CH₂COMe)C₅H₄N-C²}(PPh₃)]. The cationic products have been isolated and characterized as perchlorate salts.

Introduction

The 2-pyridyl ligand in the complexes *trans*- $[MX(C_5H_4N-C^2)(L)_2]$, [MX(C₅H₄N-C²)(dppe)] (M = Pd, Pt; X = Cl, Br; L = tertiary phosphines; dppe = 1,2-bis(diphenylphosphino)ethane), and $[C_5H_5Rh(Me)(CO)(C_5H_4N-C^2)]$ can be readily *N*-methylated by use of Me₂SO₄ or MeI [1,2]. The enhanced nucleophilicity of the 2-pyridyl nitrogen is also demonstrated by the establishment of equilibria (reactions 1 and 2), which involve displacement of PPh₃ and Cl⁻ ligands, respectively, and formation of binuclear species with C,N-bridging 2-pyridyl groups [3,4]:

$$2 \operatorname{Cl} \xrightarrow{\operatorname{PPh}_3} N \xrightarrow{\operatorname{PPh}_3} \operatorname{PPh}_3 \xrightarrow{\operatorname{PPh}_3} \operatorname{Pd} \operatorname{Pd}_{\operatorname{Pd}_3} + 2 \operatorname{PPh}_3$$
(1)

$${}^{2}\underset{H_{2}C}{\overset{PPh_{2}}{\underset{N}{\bigcirc}}} \overset{Cl}{\underset{N}{\bigcirc}} \xleftarrow{\left[\begin{array}{c} H_{2}C}{\overset{PPh_{2}}{\underset{N}{\bigcirc}}} & H_{2}C}{\underset{H_{2}C}{\overset{PPh_{2}}{\underset{N}{\bigcirc}}} & H_{2}C} &$$

Furthermore, it has recently been observed that the complexes *trans*-[PtCl($C_5H_4N-C^2$)(PPh₃)₂] and [PtCl($C_5H_4N-C^2$)(dppe)] react slowly in chlorinated solvents, such as dichloromethane and 1,2-dichloroethane, with nucleophilic substitution of Cl⁻ ions, as shown in eq. 3 [4]:

$$-Pt \longrightarrow \xrightarrow{CICH_2R} -Pt \longrightarrow + Cl^-$$

$$CH_2R$$
(3)

 $(R = Cl, CH_2Cl)$

These findings prompted us to carry out a comparative study of the nucleophilic properties of structurally related 2-pyridylpalladium(II) and platinum(II) complexes of the type *trans*-[MCl(C₅H₄N- C^2)(PPh₃)₂] (1), [MCl(C₅H₄N- C^2)(dppe)] (2) and [M(dmtc)(C₅H₄N- C^2)(PPh₃)] (3) (M = Pd, Pt; dmtc = dimethyldithiocarbamate) in reactions with a series of chloro-derivatives ClCH₂R (R = COMe, CN, Ph, Cl).

Results and discussion

Nucleophilic substitution of chloride ions from $ClCH_2R$

Complexes 1–3, containing a terminal 2-pyridyl ligand, react with $ClCH_2R$ to yield cationic 1- CH_2R -2-pyridylium products through displacement of chloride ions by the 2-pyridyl nitrogen (Scheme 1).

The reactions were generally carried out in acetone at ambient temperature with a large excess of $ClCH_2R$. The final cationic products were isolated and characterized as perchlorate salts.

Reaction 4 occurs smoothly for the platinum(II) complex **1b**, whereas the palladium(II) analog **1a** gives predominantly the binuclear compound [{PdCl(μ -C₅H₄N-C²,N)(PPh₃)}₂] (see eq. 1 and Experimental). The first step in reactions 4-6 can be observed by monitoring the increase in the electric conductivity of the acetone solutions. Under pseudo-first-order conditions, the specific conductivity values χ_t at various times fit well the mono-exponential law $\chi_t = \chi_{\infty} + (\chi_0 - \chi_{\infty}) \exp(-tk_{obs})$, from which the pseudo-first-order rate constants k_{obs} can be evaluated (Table 1).

For comparison, the k_{obs} value for the corresponding reaction of 4-dimethylaminopyridine (4-DMAP) with chloroacetone is also included in Table 1. These kinetic data were all obtained under the same experimental conditions and can be used to gain useful information about the relative nucleophilicity of the 2-pyridyl complexes, since a recent kinetic investigation on the analogous reactions of **3b** with chloroacetonitrile or 3-bromopropene in acetonitrile has shown that an $S_N 2$

(P-P = 1,2-bis(diphenylphosphino)ethane;S-S = dimethyldithiocarbamate)

Scheme 1.

mechanism operates, without any appreciable contribution from an $S_N 1$ solvolytic step [5]. As can be seen, the rates of nucleophilic substitution depend on the central metal (M = Pd < Pt, for the structurally related complexes 2 and 3), on the geometry of the complex (M = Pd, $2a \approx 3a$; M = Pt, $1b < 2b \approx 3b$), and on the substituent R of the chloro-derivative ($R = COMe > CN > Ph \gg Cl$, for the reactions with 3b). The influence of the electronic and steric properties of R is currently being examined in a detailed mechanistic study , but we note here that the fall in reactivity of the *trans* complex 1b relative to the *cis* compounds 2b and 3b can be attributed to the bulk of the *trans* PPh₃-Pt-PPh₃ unit, which leads to increasing steric crowding around the reacting 2-pyridyl nitrogen. As previously observed for the reactions of chloroacetone or 3-bromopropene with 4-DMAP and **3b** [5], the nucleophilic substitution of chloride ions in the reaction of 4-DMAP with ClCH₂COMe is slower than the corresponding reactions of the platinum(II) complexes **2b** and **3b** (~30 times slower) and of the palladium(II) complexes **2a** and **3a** (~13 times slower). This is a further evidence for the greater nucleophilic power of the 2-pyridyl nitrogen in **2** and **3**, in spite of the large steric requirements of the metal-containing substituents MCl(dppe) and M(dmtc)(PPh₃) σ -bonded to the C² pyridyl carbon.

When CH_2Cl_2 is used as the electrophile, the reactions are more conveniently carried out in neat dichloromethane, as previously reported for **1b** and **2b** [4]. Only for the platinum(II) complex **3b**, however, does a clean reaction take place, as shown by the changes in the $CD_2Cl_2^{31}P$ NMR spectra with time (Fig. 1). The time required for completion (~ 24 h at 30°C) indicates that in this case also, the *cis* complex **3b** is more reactive than the *trans* derivative **1b**. For the latter compound, the reaction with CH_2Cl_2 was found to go to completion in approx. 48 h under comparable conditions [4]. The 2-pyridylpalladium(II) complexes **1a**–**3a** are rather unstable in CH_2Cl_2 solution; with time, complex **1a** rearranges to the binuclear species [{PdCl(μ -C₅H₄N-C², N)(PPh_3)}₂] in accord with equilibrium 1, whereas **2a** and **3a** slowly decompose to give a mixture of various products (as shown by ³¹P NMR spectroscopy), the nature of which has not been further investigated.

The complex [{PdCl(μ -C₅H₄N-C², N)(PPh₃)}₂], in which the 2-pyridyl nitrogens are coordinated to the palladium centres, shows no tendency to react with chloroacetone even under forcing conditions (large excess of ClCH₂COMe and prolonged refluxing in 1,2-dichloroethane). However, in the presence of Cl⁻ ions a slow reaction occurs, presumably through reversible formation of a mononuclear intermediate with a terminal 2-pyridyl ligand:

(11a)

Characterization of reaction products

The products of reaction 4–7 were characterized by elemental analysis, molar conductivity measurements, IR spectroscopy (Table 2), and ¹H and ³¹P NMR spectroscopy (Table 3). All the cationic derivatives behave as uni-univalent electrolytes in acetone [6], whereas complex **11a** has a negligible molar conductivity, in agreement with its zwitterionic nature. The *cis* geometry of **11a** is suggested by the

Compound	CICH ₂ R	$10^2 \times k_{\rm obs} ({\rm min}^{-1})$	
1b	R = COMe	0.36	
2a	COMe	2.38	
2b	COMe	5.32	
3a	COMe	2.33	
3b	COMe	5.87	
3b	CN	1.47	
3b	Ph	0.44	
3b	Cl	_ <i>b</i>	
4-DMAP	COMe	0.18	

Pseudo-first-order rate constants $(\pm 5\%)$ for reactions 4-6 ^a

Table 1

^{*a*} From changes of specific conductivity with time for the reactions of the 2-pyridyl complexes 1-3 or 4-DMAP at initial concentrations of 10^{-3} M, with ClCH₂R at initial concentration of 5×10^{-2} M, in acetone at 25°C. ^{*b*} Too slow to measure.

appearance of two ν (Pd-Cl) bands, at 306 and 290 cm⁻¹, in the IR spectrum. In the starting complexes **3** and their derivatives **7a-10b**, the dmtc group is characterized by a strong ν (C···N) absorption in the range 1540–1570 cm⁻¹, the position of which (at wave numbers higher than 1485 cm⁻¹) points to a bidentate chelation of the dimethyldithiocarbamate ligand [7]. In the products **4b**, **6**, **7** and **11a**, the ν (C=O) band of the (1-CH₂COMe)C₅H₄N-C² moiety falls in the narrow range 1738–1743 cm⁻¹, very close to the ν (C=O) value of 1736 cm⁻¹ observed for the pyridinium compound [(1-CH₂COMe)C₅H₄N-C² ligand is not involved in coordination with the central metal.

In the ¹H NMR spectra, the methyl protons of the dmtc group in complexes 3 and 7-10b give rise to two distinct singlets in the range 3.31-3.20 ppm, indicating a rigid coordination geometry in solution, with a chelating dimethyldithiocarbamate ligand. For the $(1-CH_2R)C_5H_4N-C^2$ groups, the NCH₂ resonance appears as a singlet, in the complexes with a trans geometry (4b and 5b), or as an AB system, in the complexes, with a *cis* geometry 6-10b and 11a. This difference can be rationalized in terms of a rigid structure in solution (without any fast exchange of ligand coordination site on the NMR time scale), in which the pyridyl plane is perpendicular to the mean coordination plane, and with hindered rotation around the $M-C^2$ bond. Thus, in the *trans* complexes there is a plane of symmetry perpendicular to the mean coordination plane and passing through the Pt, Cl and pyridyl ring atoms, which results in equivalence of the methylene protons as well as that of the *trans* phosphorus atoms in the ³¹P NMR spectra. A configuration of this type was revealed in the solid state for trans-[MCl{(1-R')C₅H₄N- C^{2} (PMe₂Ph)₂]ClO₄ (M = Pd, Pt; R' = H, CH₂Cl) by X-ray structural analyses [8,9]. On the other hand, in the *cis* complexes the absence of such a plane (and of any other element of symmetry) induces chirality on the metal centre, with concomitant diastereotopic behaviour of the methylene protons. As shown by models, the lack of free rotation around the $M-C^2$ bond is mainly due to steric interaction between the $(1-CH_2R)C_5H_4-C^2$ group and the *cis* phosphorus ligand.

Compound	Anal. For	und (calc.)	(%)		Molar	IR (cm ^{-1})	<i>q</i>		
	c	Н	z	CI	conductivity "	ν(M-Cl)	<i>v</i> (M−S)	ν(CΝ) ^c	ν (C=O) ^d
$[M(dmtc)(C_5H_4N-C^2)(PPh_3)]$									
M = Pd (3a)	54.8 (55.07)	4.4 (4 44)	4.9 (4 94)		0.4		366m	1540s(br)	
M = Pt (3b)	47.7	3.8	4.2		0.8		374m	1540s(br)	
	(47.62)	(3.84)	(4.27)						
<i>trans</i> -[PtCl{(1-CH ₂ R)C ₅ H ₄ N- C^2)(PPh ₃) ₂]ClO ₄ P - COM ₆ (4b)	53.7	3.0	4	с г г	1 22 1	304			
	53.39)	(3.97)	(1.41)	(7.16)	1.121				SIII74/1
$\mathbf{R} = \mathbf{C}\mathbf{N} \ (5\mathbf{b})$	53.3 (53.00)	3.7	2.8	7.3	127.0	310m			
	(60.00)	(6/.6)	(227)	(67.1)					
[MCI{(1-CH ₂ COMe)C ₅ H ₄ N-C ² }(dppe)]CIO ₄									
M = Pd (6a)	52.5	4.2	1.7	9.3	132.4	309m			1738ms
	(52.70)	(4.29)	(1.81)	(9.15)					
M = Pt (6b)	47.6	3.9	1.5	8.2	131.4	308m			1738ms
	(47.29)	(3.85)	(1.62)	(8.21)					
$[M(dmtc)((1-CH_2R)C_5H_4N-C^2)(PPh_3)]CIO_4$									
$\mathbf{M} = \mathbf{Pd}, \mathbf{R} = \mathbf{COMe} (\mathbf{7a})$	47.8	4.2	3.8	5.1	124.0		372m	1560s(br)	1738s
	(48.14)	(4.18)	(3.87)	(4.90)					
M = Pt, R = COMc (7b)	43.1	3.8	3.4	4.5	130.4		380m	1570s(br)	1738s
	(42.88)	(3.72)	(3.45)	(4.36)					
$\mathbf{M} = \mathbf{Pt}, \mathbf{R} = \mathbf{CN} (\mathbf{8b})$	41.9	3.4	5.2	4.6	139.4		380m	1560s(br)	
	(42.29)	(3.42)	(5.28)	(4.46)					
M = Pt, R = Ph (9b)	46.6	3.9	3.3	4.1	140.4		380m	1550s	
	(46.83)	(3.81)	(3.31)	(4.19)					
$M = Pt, R = Cl (10b)^{e}$	38.7	3.3	3.2	12.4	133.4		380m	1560s	
	(38.99)	(3.33)	(3.31)	(12.55)					
cis -[PdCl ₂ {(1-CH ₂ COMe)C ₅ H ₄ N-C ² }(PPh ₃)]	52.5	4.3	2.4	12.2	0.7	306m; 290n	-		1743ms
\cdot H ₂ O (11a)	(52.68)	(4.42)	(2.36)	(11.96)					

Analytical and conductivity data. Characteristic IR absorptions

Table 2

160

Fig. 1. ³¹P NMR spectra of [Pt(dmtc)($C_5H_4N-C^2$)(PPh₃)] (3b) in CD₂Cl₂ at 30°C: (A) immediately after dissolution; (B) after 6 h; (C) after 24 h. The signals with an asterisk are from the product [Pt(dmtc)((1-CD₂Cl)C₅H₄N-C²)(PPh₃)]⁺.

Sterically hindered rotation is also observed for the complexes *trans*-[PtCl{(1-R')C₅H₄N- C^2 }(PMe₂Ph)₂]ClO₄ (R' = Me, CH₂Cl) in CD₂Cl₂ solution [9].

Interestingly, the N-CH₂ signal of compound **11a** becomes a singlet in dimethylsulfoxide (see Table 3). The spectral change on going from CD_2Cl_2 to the more coordinating $(CD_3)_2SO$ solvent may arise either from $cis \rightarrow trans$ isomerization or from a fast site exchange of the *trans* PPh₃ and chloride ligands (promoted by solvent coordination on the central metal), which generates an averaged plane of symmetry. The detection of close ³¹P resonances in both solvents (28.8 ppm in CD_2Cl_2 and 28.1 ppm in $(CD_3)_2SO$) favours the latter process.

Com-	2-Pyridyl protons		dmtc protons	N-CH ₂ R protons		³¹ P resonances	Solvent
pound	H ³	H ⁶	N-CH ₃	N-CH ₂ -	R = COCH ₃		
3a ^b	6.98m	8.16m	3.29s, 3.26s			28.4s (br)	CDCl ₃
3b ^b	7.01m ³ J(Pt-H) 36.0	8.02m	3.23s, 3.18s			17.0s ¹ J(Pt-P) 4125	CD ₂ Cl ₂
4b	mk ^c	7.76m ⁴J(Pt-H) 12.0		5.82s ⁴ J(Pt-H) 6.5	2.01s	20.0s ¹ J(Pt-P) 2629	CD ₂ Cl ₂
5b	mk ^c	8.27m ⁴ J(Pt-H) 13.0		5.61s ⁴ J(Pt-H) 5.0		19.2s ¹ J(Pt-P) 2571	CDCl ₃
6a	mk ^c	mk ^c		5.76 ^{<i>d</i>} , 5.01 ^{<i>d</i>} ² <i>J</i> (H–H) 17.5	2.16s	58.2d, 46.8d ² J(P-P) 17.8	CD ₂ Cl ₂
6b	mk °	mk °		5.95 ^{<i>d</i>} , 4.91 ^{<i>d</i>} ⁴ <i>J</i> (Pt–H) 5.8, ² <i>J</i> (H–H) 17.4	2.14s	39.6 ^{<i>d,e</i>} , 39.3 ^{<i>d,f</i>} ¹ <i>J</i> (Pt-P) 2065, ¹ <i>J</i> (Pt-P) 3456 ² <i>J</i> (P-P) 6.0	CD ₂ Cl ₂
7a	7.68m	8.14m	3.29s, 3.25s	5.97 ^{<i>d</i>} , 5.69 ^{<i>d</i>} ² <i>J</i> (H–H) 17.6	2.26s	29.0s	CD ₂ Cl ₂
7b	7.63m ³ J(Pt-H) 42.0	8.07m ⁴ J(Pt-H) 12.0	3.24s, 3.20s	6.14 ^{<i>d</i>} , 5.69 ^{<i>d</i>} ⁴ J(Pt-H) 8.4, ⁴ J(Pt-H) 3.2 ² J(H-H) 17.6	2.28s	14.3s ¹ J(Pt-P) 3474	CD ₂ Cl ₂
8b	7.80m ³ J(Pt-H) 40.0	8.54m ⁴ J(Pt-H) 13.0	3.28s, 3.23s	5.99 ^{<i>d</i>} , 5.73 ^{<i>d</i>} ⁴ J(Pt-H) 4.6, ⁴ J(Pt-H) 3.4 ² J(H-H) 17.0		13.7s ¹ J(Pt-P) 3426	CD ₂ Cl ₂
9b	7.93m ³ J(Pt-H) 40.0	8.02m ⁴ J(Pt-H) 12.0	3.26s, 3.24s	6.47 ^{<i>d</i>} , 5.00 ^{<i>d</i>} ⁴ <i>J</i> (Pt-H) 7.5, ⁴ <i>J</i> (Pt-H) 5.7 ² <i>J</i> (H-H) 14.1		13.6s ^I J(Pt-P) 3503	CD ₂ Cl ₂
10b	7.78m ³ J(Pt-H) 40.0	8.47m ⁴ J(Pt-H) 14.0	3.27s, 3.22s	6.49 ^{<i>d</i>} , 6.28 ^{<i>d</i>} ${}^{4}J(\text{Pt}-\text{H})$ 5.4, ${}^{4}J(\text{Pt}-\text{H})$ 3.5 ${}^{2}J(\text{H}-\text{H})$ 9.8		14.0s ¹ J(Pt-P) 3448	CD ₂ Cl ₂

Selected ¹H and ³¹P NMR data ^a

^a Spectra recorded at 30°C; $\delta(^{1}H)$ values in ppm from TMS as internal standard; $\delta(^{31}P)$ values in ppm from external 85% H₃PO₄, downfield shifts being taken as positive; coupling constants in Hz; s, singlet; d, doublet; m, multiplet; satisfactory integration values have been obtained. ^b Spectra recorded immediately after dissolution.^c Masked by the intense resonance of phenyl protons.^d AB system: the chemical shifts have been calculated from the spectral frequencies [10]. e trans to the C²-bonded heterocyclic ligand. f trans to the Cl ligand.

6.12s

6.47^d, 5.79^d

²J(H-H) 18.2

2.21s

2.23s

28.8s

28.1s

 CD_2Cl_2

 $(CD_3)_2SO$

11a

mk ^c

mk ^c

8.08m

8.13m

Table 3

Experimental

The complexes trans- $[MCl(C_5H_4N-C^2)(PPh_3)_2]$ (1) and $[MCl(C_5H_4N-C^2)(dppe)]$ (2) were prepared by published methods [1,3,4]. All chemicals and solvents were reagent grade and were used without further purification. Infrared spectra were recorded with Perkin-Elmer 1430 and 983 instruments, using Nujol mulls and CsI windows in the range 4000-200 cm⁻¹. The ¹H and ³¹P-{¹H} NMR spectra were recorded with a Varian FT 80A spectrometer. The conductivity measurements were carried out with a digital CDM 83 conductivity meter. The solvents were evaporated to small volume or to dryness at reduced pressure in a rotary evaporator.

Preparation of $[M(dmtc)(C_5H_4N-C^2)(PPh_3)]$ (3)

M = Pd (3a). A solution of sodium dimethyldithiocarbamate dihydrate (0.45 g, 2.5 mmol) in methanol (10 ml) was added to a suspension of [{PdCl(μ -C₅H₄N- C^2 , N)(PPh₃)}₂] (0.96 g, 1 mmol) in 80 ml of benzene. After 30 min stirring, the solvents were evaporated to dryness, and the solid residue was extracted with benzene (100 ml) in the presence of activated charcoal. After filtration, the solution was concentrated to small volume and diluted with diethyl ether to precipitate the complex 3a as pale-yellow microcrystals. The product was purified by reprecipitation from a concentrated C₆H₆ solution with Et₂O (0.83 g, 73.2%). This compound must be stored at low temperature (-20°C) because it slowly decomposes at ambient temperature.

M = Pt (3b). The salt Na(dmtc) $\cdot 2H_2O$ (0.94 g, 5.25 mmol) dissolved in methanol (30 ml) was added to a solution of *trans*-[PtCl(C₅H₄N-C²)(PPh₃)₂] (1b, 2.50 g, 3 mmol) in 100 ml of benzene. The mixture was stirred overnight and worked up as described above for 3a. Reprecipitation from C₆H₆/Et₂O gave the product as white microcrystals (1.77 g, 90.0%).

Reactions of 2-pyridyl complexes 1, 2 and 3 with $ClCH_2R$ (R = COMe, CN, Ph)

The starting complex (0.5 mmol), dissolved or suspended in acetone (50 ml), was treated with an excess of ClCH₂R (molar ratio complex/ClCH₂R 1:25). The mixture was stirred for 24 h at ambient temperature to give a clear solution. After addition of NaClO₄ · H₂O (0.14 g, 1 mmol), the solvent was evaporated to dryness and the residue was extracted with CH₂Cl₂ (50 ml) in the presence of charcoal. The filtered solution was concentrated to small volume and diluted with Et₂O to precipitate the products as pale-yellow (M = Pd) or white (M = Pt) solids. The yields ranged from 70.0 for **5b** to 94.4 for **6a**, after reprecipitation from CH₂Cl₂/ Et₂O. Under the same conditions, the complex *trans*-[PdCl(C₅H₄N-C²)(PPh₃)₂] (**1a**, 0.5 mmol) in the presence of chloroacetonitrile (12.5 mmol) rearranged to [{PdCl(μ -C₅H₄N-C², N)(PPh₃)}₂] (0.2 mmol), which separated from the acetone solution and was readily identified from its IR and ³¹P NMR spectra [3].

Reaction of 4-dimethylaminopyridine with chloroacetone

A solution of 4-DMAP (0.25 g, 2 mmol) and ClCH₂COMe (4 ml, 50 mmol) in acetone (100 ml) was set aside for 5 days, then $NaClO_4 \cdot H_2O$ (0.56 g, 4 mmol) was added and the mixture worked up as above to yield the pyridinium salt [(1-CH₂COMe)(4-NMe₂)C₅H₄N]ClO₄ as white crystals (0.43 g, 77.1%). Anal. Found:

C, 42.9; H, 5.4; N, 9.9; Cl, 12.7. $C_{10}H_{15}N_2O_5Cl$ calc.: C, 43.09; H, 5.42; N, 10.05; Cl, 12.72%. Molar conductivity: 143.4 ohm⁻¹ cm² mol⁻¹ for a 10⁻³ *M* acetone solution at 25°C. IR ν (C=O) 1736s cm⁻¹. ¹H NMR (CD₂Cl₂): 7.84 (m, 2H); 6.80 (m, 2H) AA'BB' system of pyridine protons; 5.19 (s, 2H, N-CH₂-); 3.23 (s, 6H, N(CH₃)₂); 2.33 (s, 3H, COCH₃) ppm.

Reaction of $[Pt(dmtc)(C_5H_4N-C^2)(PPh_3)]$ (3b) with CH_2Cl_2

A solution of complex **3b** (0.33 g, 0.5 mmol) in CH_2Cl_2 (50 ml) was kept in a thermostat at 30°C for 2 days. After this time a solution of $NaClO_4 \cdot H_2O$ (0.14 g, 1 mmol), in 5 ml of methanol was added, and the mixture worked up as described for the analogous reactions of **1b** and **2b** [4] to yield [Pt(dmtc){(1- CH_2Cl)C₅H₄N- C^2 }(PPh₃)]ClO₄ · 1/2 CH₂Cl₂ (**10b**) as a white solid (0.32 g, 75.5%).

Preparation of cis-[PdCl₂{(1-CH₂COMe)C₅H₄N-C²}(PPh₃)] \cdot H₂O (11a)

Chloroacetone (2 ml, 25 mmol) and tetraphenylphosphonium chloride (0.65 g, 2 mmol) were added to a solution of $[{PdCl(\mu-C_5H_4N-C^2,N)(PPh_3)}_2]$ (0.96 g, 1 mmol) in 1,2-dichloroethane (~ 100 ml). The mixture was refluxed at 90–93°C for 30 h, during which the progress of the reaction was monitored by IR spectroscopy in the range 1700–1500 cm⁻¹ by observing the decrease of the pyridine ring vibration in the starting compound at 1585 cm⁻¹ and the concomitant increase of the corresponding vibration in the product at 1618 cm⁻¹. After treatment with charcoal and filtration, the resulting solution was evaporated to dryness and the solid was washed with methanol (3 × 20 ml) to dissolve the tetraphenylphosphonium chloride. The crude product **11a**, scarcely soluble in methanol, was purified by two successive precipitations from CH₂Cl₂/Et₂O (0.88 g, 74.2%).

Acknowledgements

Financial support from MURST (Research Fund 60%) is gratefully acknowledged. We thank Professor Paolo Uguagliati of the University of Venice for computer calculation of the pseudo-first-order rate constants, and Mr. Adriano Berton of C.N.R. Padua for recording the NMR spectra.

References

- 1 B. Crociani , F. Di Bianca, A. Giovenco and A. Scrivanti, J. Organomet. Chem., 251 (1983) 393.
- 2 F.P. Fanizzi, G.J. Sunley, J.A. Wheeler, H. Adams, N.A. Bailey and P.M. Maitlis, Organometallics, 9 (1990) 131.
- 3 R. Bertani, A. Berton, F. Di Bianca and B. Crociani, J. Organomet. Chem., 303 (1986) 283.
- 4 B. Crociani, F. Di Bianca, A. Giovenco, A. Berton and R. Bertani, J. Organomet. Chem., 361 (1989) 255.
- 5 B. Crociani, F. Di Bianca, P. Uguagliati and L. Canovese, Inorg. Chim. Acta, 176 (1990) 5.
- 6 W.J. Geary, Coord. Chem. Rev., 7 (1971) 81.
- 7 C. O'Connor, J.D. Gilbert and G. Wilkinson, J. Chem. Soc. A, 1152 (1968).
- 8 F. Benetollo, G. Bombieri, F. Di Bianca and B. Crociani, Inorg. Chim. Acta, in press.
- 9 B. Crociani, F. Di Bianca, F. Benetollo and G. Bombieri, manuscript in preparation.
- 10 H. Günter, NMR Spectroscopy, Wiley, New York, 1980.